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Abstract. A comparison of two expressions of the Tutte polynomial of an ordered ori-
ented matroid yields remarkable numerical relations between the numbers of bases and
reorientations with given activities. We address here the bijection problem for these re-
lations, by constructing a natural activity preserving correspondence with suitable multi-
plicities between bases and reorientations, called the canonical active (basis-reorientation)
correspondence.

A decomposition of activities is used, reducing the problem to situations with one ac-
tivity equal to 1 and the other equal to 0. This decomposition is closely related to a new
expression of the Tutte polynomial in terms of beta invariants of minors.

This canonical active correspondence has strong duality properties, and can be con-
structed inductively using minors with respect to the greatest element. Furthermore, it
can be refined into an active bijection between all subsets of elements, inducing an active
bijection between faces of the NBC complex of the matroid and regions of the oriented
matroid.

In the graphical case, we get active bijections between spanning trees and activity classes
of orientations, resp. acyclic orientations with a unique sink at a given vertex, resp. acyclic
orientations with adjacent unique source and unique sink at given vertices.

For the regions of an hyperplane arrangement, we get an active bijection between certain
simplices and activity classes of regions. Its restriction to simplices with (1,0)-activities and
bounded regions is a bijection. If the hyperplanes are in general position, the bijection can
be obtained by maximizing or minimizing a same linear function over all bounded regions.

In general, we get extensions of linear and oriented matroid programming: each re-
orientation is decomposed into bounded regions, and for each bounded region, instead of
optimizing a face with respect to one objective function, we optimize a sequence of nested
faces with respect to a sequence of objective functions.

Résumé. Une comparaison de deux expressions du polynôme de Tutte d’un matröıde
orienté ordonné fournit des relations numériques remarquables entre les nombres de bases
et de réorientations d’activités données. On résoud ici le problème d’une bijection pour
ces relations, en construisant une correspondance naturelle, préservant les activités, avec
des multiplicités convenables, entre les bases et les réorientations, appelée correspondance
(bases-réorientations) active canonique.

On utilise une décomposition des activités pour réduire le problème à des situations où
une activité est égale à 1 et l’autre à 0. Cette décomposition est étroitement liée à une
nouvelle expression du polynôme de Tutte en termes d’invariants béta des mineurs.

La correspondance active canonique a de fortes propriétés de dualité, et peut être con-
struite inductivement en utilisant les mineurs relativement au plus grand élément. De
plus, on peut la raffiner en une bijection active entre tous les sous-ensembles d’éléments,
induisant une bijection active entre les faces du complexe NBC du matröıde et les régions
du matröıde orienté.

Dans le cas graphique, on obtient des bijections actives entre les arbres couvrants et les
classes d’activités d’orientations resp. les orientations acycliques avec un unique puits fixé,
ou les orientations acycliques avec une unique source et un unique puits adjacents fixés.

Pour les régions d’un arrangement d’hyperplans, on obtient une bijection active en-
tre certains simplexes et des classes d’activités de régions. Sa restriction aux simplexes
d’activités (1,0) et aux régions bornées est une bijection. Si les hyperplans sont en position
générale, cette bijection s’obtient en maximisant ou minimisant une même forme linéaire
pour toutes les régions bornées.

En général, on obtient des extensions de la programmation linéaire et de la programma-
tion dans les matröıdes orientés: chaque réorientation est décomposée en régions bornées,
et pour chaque région bornée, au lieu d’optimiser une face pour une fonction objective on
optimise une suite de faces embôıtées relativement à une suite de fonctions objectives.

Keywords: matroid, oriented matroid, Tutte polynomial, basis, reorientation, activity,
orientation, graph, directed graph, spanning tree, source, sink, acyclic, bijective proof,
pseudoline arrangement, hyperplane arrangement, bounded region, linear programming,
flag programming.
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1. Introduction

The Tutte polynomial of a matroid is a 2-variable polynomial invariant, introduced
for graphs by W.T. Tutte [Tu54], and generalized to matroids by H.H. Crapo [Cr69].
Up to simple algebraic transformations, the Tutte polynomial of a matroid is equiv-
alent to its rank-generating function, i.e. to the generating function of cardinality
and rank of subsets of elements. The Tutte polynomial is a fundamental tool in the
theory of numerical invariants of matroids, and has useful enumerative properties and
numerous applications. We refer the reader to Section 2 for relevant definitions, and
to [BrOx92] for an extensive survey on the subject.

Let M be a matroid on a linearly ordered set of elements E. By a classical theorem
proved by W.T. Tutte for graphs [Tu54], and extended to matroids by H.H. Crapo
[Cr69], we have

t(M ;x, y) =
∑
i,j

bi,jx
iyj

where bi,j is the number of bases of M such that i basis elements are smallest in their
fundamental cocircuit and j non-basis elements smallest in their fundamental circuit.

On the other hand, if M is an oriented matroid, M. Las Vergnas has shown in
[LV84] that

t(M ;x, y) =
∑
i,j

oi,j2
−i−jxiyj

where oi,j is the number of reorientations of M with exactly i elements smallest in
some positive cocircuit and j elements smallest in some positive circuit.

This formula contains several results of the literature (see below, Section 2). Com-
paring the above two expressions for t(M ;x, y), we get the relation

oi,j = 2i+jbi,j

for all i, j. A natural question arises of a bijective proof for these formulas. The
problem is to define a correspondence between bases and reorientations, preserving
parameters (i, j), called activities, and compatible with the above formulas. More
precisely, the desired correspondence should associate with a (i, j)-active basis of M ,
a set of 2i+j (i, j)-active reorientations, in such a way that each reorientation of M
is in the image of a unique basis.

The construction of a natural correspondence with these properties in general ori-
ented matroids, called the canonical active basis-reorientation correspondence, is de-
scribed into details in [Gi02], and will be the object of a forthcoming series of papers
[GiLV]. Two other papers deal with special cases: graphs in [GiLV02], uniform and
rank 3 oriented matroids in [GiLV03].

In the present survey, we sketch the construction of the canonical active correspon-
dence. We give the two converse algorithms defining it, its fundamental properties
and some significant illustrations.

2. Preliminaries

Let M be a matroid on a set of elements E, and B ⊆ E be a basis of M . For
e ∈ E \ B, we denote by C(B; e) the fundamental circuit of e with respect to B, i.e.
the unique circuit contained in B ∪ {e}. Dually, for e ∈ B, we denote by C∗(B; e)
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the fundamental cocircuit of e with respect to B, i.e. the unique cocircuit contained
in (E \B) ∪ {e}. For e ∈ E \B and e′ ∈ B, we have clearly e′ ∈ C(B; e) if and only
if e ∈ C∗(B; e′), and then C(B; e) ∩ C∗(B; e′) = {e, e′}.

We say that a matroid M is ordered if its set of elements E is linearly ordered.
The notion of activities of a basis B in an ordered matroid M is essentially due to
W.T. Tutte in the case of graphs [Tu54]. The internal activity ι(B) is the number
of elements e ∈ B smallest in their fundamental cocircuit C∗(B; e), and the external
activity ε(B) is the number of elements e ∈ E\B smallest in their fundamental circuit
C(B; e). We say that a basis B with ι(B) = i and ε(B) = j is an (i, j)-basis. We
denote by bi,j(M) the number of (i, j)-bases of M .

Spanning tree activities have been introduced by Tutte to generalize, in a self-dual
way, classical properties of the chromatic polynomial of a graph [Tu54]. The theorem
for graphs extends to matroids [Cr69], we have

t(M ;x, y) =
∑
i,j

bi,jx
iyj

This expression readily implies that the coefficients bi,j are independent from the
ordering of E. In fact, originally, the Tutte polynomial of a matroid is defined by the
closed formula

t(M ;x, y) =
∑
A⊆E

(x− 1)r(M)−rM (A)(y − 1)|A|−rM (A

algebraically equivalent to the rank generating function of the matroid, and the above
formula is proved by deletion/contraction of the greatest element (see [BrOx92]).
A classical inductive definition of the Tutte polynomial is given by the following
deletion/contraction relations:

if e ∈ E is not a loop nor an isthmus then t(M ;x, y) = t(M/e;x, y) + t(M \ e);x, y)
if e ∈ E is an isthmus then t(M ;x, y) = x t(M/e;x, y) = x t(M \ e);x, y)
if e ∈ E is a loop then t(M ;x, y) = y t(M/e;x, y) = y t(M \ e);x, y)
if E = ∅ then t(∅;x, y) = 1

For usual definitions on oriented matroids, the reader is referred to [OM]. If the
matroid M is oriented for e ∈ E\B, we denote by C(B; e) the unique signed circuit C
contained in B ∪ {e} such that e ∈ C+, and dually for e ∈ B, we denote by C∗(B; e)
the unique signed cocircuit D contained in (E \ B) ∪ {e} such that e ∈ D+. We
recall that two signed subsets X, Y are said conformal if their signs agree on their
intersection.

An oriented matroid is acyclic if it contains no positive circuit, or equivalently,
if every element is contained in a positive cocircuit. Dually, an oriented matroid is
totally cyclic if it contains no positive cocircuit, or equivalently, if every element is
contained in a positive circuit. An oriented matroid is acyclic if and only if the dual
oriented matroid is totally cyclic.

A basic result in the domain of the present paper, is a theorem due to R. Stanley
(1973): the number of acyclic orientations of a graph G is equal to t(C(G); 2, 0),
where C(G) is the cycle matroid of G [St73]. This theorem has been generalized
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independently in 1975 by T. Zaslavsky to real spaces in terms of hyperplane arrange-
ments [Za75] (see also [BrLu76]), and by M. Las Vergnas to oriented matroids [LV75]
(see also [LV80]).

The paper [LV84] introduces a generalization of these results in terms of an orien-
tation generating function. The (primal) orientation activity of an ordered oriented
matroid M , or O-activity, denoted by o(M), is the number of elements smallest in
some directed circuit. The dual orientation activity of M , or O∗-activity, denoted by
o∗(M), is the number of elements smallest in some directed cocircuit. We denote by
oi,j(M) the number of subsets A ⊆ E such that o∗(−AM) = i and o(−AM) = j,
where −AM denotes the reorientation of M obtained by reversing signs on A (note
that this notation differs slightly from the notation AM used in [3]). We say that
a reorientation A such that o∗(−AM) = i and o(−AM) = j is a (i, j)-reorientation.
The definitions of O- and O∗-activities have been introduced in [LV84] in relation
with the formula

t(M ;x, y) =
∑
i,j

oi,j2
−i−jxiyj

This formula implies that oi,j does not depend on the ordering. The proof in [LV84]
is by deletion/contraction of the greatest element. Note that

∑
i oi,0 is the num-

ber of acyclic reorientations of M , hence the above formula generalizes results of
[BrLu76][LV75][St73][Za75].

It follows from the comparison of the above two state models for the Tutte poly-
nomial that

oi,j = 2i+jbi,j

In particular we get the equality o1,0 = 2b1,0. This special case is originally due to
C. Greene and T. Zaslavsky [GrZa83] for acyclic orientations of graphs with adjacent
unique source and sink (see also [GeSa00]), or bounded regions in real spaces, a result
generalized in [LV77] to oriented matroids.

Parts of the present paper use the topological representation of oriented matroids.
We refer the reader to [OM] Chap. 5 for the needed prerequisites. Some notions on
linear programming in oriented matroids are also necessary in subsection 3.3. We
refer the reader to [OM] Chap. 10.

3. Decomposition of activities

Our purpose in this section is to reduce the general case of activities (i, j) to the
case when (i, j) = (1, 0) or (i, j) = (0, 1). Given a basis B of an ordered matroid, we
define minors decomposing its set of elements, such that the bases of these minors
induced by B, which partition B, have activities (1, 0) or (0, 1). Similarly, we define
minors of an ordered oriented matroid decomposing its set of elements with (1, 0-
or (0, 1)-orientation activities. The similarity of these decompositions reduces our
main problem - defining the active correspondence - to the particular case of (1, 0)
activities. This section develops and deepens ideas from [LV83] and [EtLV98].

More precisely, we introduce the notion of decomposing sequences of an ordered
oriented matroid, from either a basis or a reorientation. A decomposing sequence is
an increasing sequence of subsets of elements of the matroid. Minors are defined from
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a decomposing sequence on the differences of two consecutive sets of the sequence:
they define an active partition of the matroid. The notion of active partition is a
refinement of the notion of activities.

In the first part, we define an active decomposition of a basis in an ordered ma-
troid. We obtain as corollary an expression of the Tutte polynomial in terms of beta
invariants of minors of the matroid.

In the second part, similarly, we define an active decomposition of a reorientation of
an ordered oriented matroid. The set of 2i+j reorientations obtained by reorienting
in all possible ways the i + j parts of the active partition of a reorientation with
activities (i, j) is called an activity class of reorientations. All reorientations in an
activity class have the same active partition. The activity classes constitute a natural
partition of the set of reorientations.

The similarity of these two constructions, will be used in a third part to define a
general active correspondence by extending active correspondences obtained in the
(1, 0) case.

3.1. Activities of bases. Let M be an ordered matroid on E, and B be a basis of
M . Let Ext(B) = {a1 < a2 < . . . < a`} be the set of externally active elements of B
(` = εM(B)). We denote by C<(B; e) the set of elements b ∈ C(B; e) with b < e,

For X ⊆ E set

f 1(X) = f(X) = X ∪
⋃

e∈(E\B)∩X

C(B; e) ∪ { e ∈ E | ∅ ⊂ C<(B; e) ⊆ X }

f i+1(X) = f(f i(X))

f̂(X) =
⋃
i≥1

f i(X)

Let F = f̂(Ext(B)), and similarly F ∗ calculated for E \B in M∗. Set B′ = B ∩F
and B′′ = B \ F , and M ′ = M(F ) and M ′′ = M/F .

Proposition 1. E = F + F ∗

ιM ′(B
′) = 0, εM ′(B

′) = εM(B)
ιM ′′(B

′′) = ιM(B), εM ′′(B
′′) = 0

For 0 ≤ i ≤ `− 1, let Fi = f̂({ai+1, ..., a`}; we have ∅ ⊂ Fε−1 ⊂ ... ⊂ F1 ⊂ F0 = F .
For 1 ≤ i ≤ `, set Ai = Fi−1 \Fi, we have F = A1 +A2 + . . .+A`, and Bi = B∩Ai

is a basis of the matroid Mi = M(Fi−1)/Fi = M/
∑

j<iAj \
∑

j>iAj on Ai, and

Min(Ai) = ai.

Proposition 2. For 1 ≤ i ≤ `, ιMi
(Bi) = 0, εMi

(Bi) = 1

For a basis B of the matroid M , with Fc = F , F ′i = Fi for 1 ≤ i ≤ εM(B), and
F ′′i the complement of Fi calculated for E \ B in M∗ for 1 ≤ i ≤ ιM(B), we have
defined the decomposing sequence associated with B in M (or with E \ B in M∗ up
to complementarity in E). The partition of E induced by the partitions of F and F ∗

is called the active partition of M with respect to B, and F , resp. F ∗, is called the
external, resp. internal, part of B.
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The active partition of a basis depends only on its fundamental circuits (or cocir-
cuits) but not on the whole matroid. From a constructive point of view, there is an
algorithm to compute this sequence of subsets associated with B in a single pass of
E.

Proposition 3. Let B ba a basis of M on E = e1 < ... < en, and α be an application
from E in E which maps e ∈ E on the minimal element of its part in the active
partition of B. This application is defined by the following algorithm.

For k from 1 to n do :
If ek 6∈ B then :

if ek is externally active, then ek is external and α(ek) := ek ;
else

if there exists c < ek internal in C(B; ek) then
ek is internal
α(ek) := α(c) the greatest possible with c < ek internal in C(B; ek) ;

else
ek is external
α(ek) := α(c) the smallest possible with c in C(B; ek).

If ek ∈ B then :
if ek is internally active, then ek internal and α(ek) := ek ;
else

if there exists c < ek external in C∗(B; ek) then
ek is external
α(ek) := α(c) the greatest possible with c external in C∗(B; ek) ;

else
ek is internal
α(ek) := α(c) the smallest possible with c in C∗(B; ek).

3.2. Activities of reorientations. Let M be an ordered oriented matroid on E,
and a1 < a2 < . . . < a` be the orientation-active elements of M (` = o(M)).

Let F the union of all positive circuits of M and F ∗ union of all positive cocircuits
of M .

Proposition ‘Farkás Lemma for oriented matroids’ (see [OM] Cor. 3.4.6). We have
E = F + F ∗

For 0 ≤ i ≤ `− 1, let F ′i be the union of all positive circuits with smallest element
a ≥ ai+1. We have ∅ ⊂ Fε−1 ⊂ ... ⊂ F1 ⊂ F0 = F .

For 1 ≤ i ≤ `, set Ai = Fi−1 \ Fi. We have E = A1 + A2 + . . . + A`. The
minor Mi = M(Fi)/Fi+1 = M/

∑
j<iAj \

∑
j>iAj is an oriented matroid on Ai with

Min(Ai) = ai.

Proposition 4. For 1 ≤ i ≤ `, we have o∗(Mi) = 0, o(Mi) = 1

For an ordered oriented matroidM , with Fc = F , F ′i = Fi for 1 ≤ i ≤ o(M), and F ′′i
the complementary of the Fi calculated for M∗ for 1 ≤ i ≤ o∗(M), we have defined the
decomposing sequence associated with M (or with M∗ up to complementarity in E).
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The partition of E induced by the partitions of F and F ∗ is called the (orientation)
active partition of M .

Example. Figure 1 shows some regions in an arrangement of rank 4. The active
partition associated with a region is written above the region. The sequences of
positive cocircuits corresponding to the decomposing sequences of flats used for these
regions are drawn in bold. The linear ordering is 1 < 2 < 3 < 4 < a < ... < g, the
minimal basis is 1234.

3

2

1

4d b c a g f e

1+2+3+4abcdefg

  1bcd

+2aefg

+34

  1bcd

+2aefg

+34

  1

+2abcdefg

+34

  1

+2abcdefg

+34

  1efg

+2abcd

+34

  1efg

+2abcd

+34

  1

+2

+34abcdefg

Figure 1

3.3. Extension from the (0, 1) or (1, 0) case to the general case. The sequences
of subsets of E defined in the two previous subsections lead to the following definition.
The results of this subsection are given quickly, see [GiLV] (or [Gi02] chapter 2) for
precise formulations.

Definition. A decomposing sequence of an ordered matroid M on E

∅ = F ′ε ⊂ ... ⊂ F ′0 = Fc = F ′′0 ⊂ ... ⊂ F ′′ι = E

is an increasing sequence of subsets of E satisfying:
- Fc is a cyclic flat of M (i. e. Fc is a flat of M and E \ Fc is a flat of M∗) ;
- for all k, 0 ≤ k ≤ ι, F ′′k is a flat of M , and Fc = F ′′0 ⊂ ... ⊂ F ′′ι = E;
- for all k, 0 ≤ k ≤ ε, E \ F ′k is a flat of M∗, and ∅ = F ′ε ⊂ ... ⊂ F ′0 = Fc;
- the sequence min(F ′′k \ F ′′k−1), 1 ≤ k ≤ ι, is increasing with k;
- the sequence min(F ′k−1 \ F ′k), 1 ≤ k ≤ ε, is increasing with k;
- the matroids M(F ′′k )/F ′′k−1, 1 ≤ k ≤ ι, and M(F ′k−1)/F

′
k, 1 ≤ k ≤ ε are such that

b1,0 = b0,1 6= 0 (or, equivalently, are connected).

A decomposing sequence induces by successive differences a partition of E, which
is called active partition of E acording to this decomposing sequence:

E = F ′1 \ F ′0 + ...+ F ′ε \ F ′ε−1 + F ′′1 \ F ′′0 + ...+ F ′′ι \ F ′′ι−1
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For an ordered matroid M , when B runs through the set of all bases of M , all the
(0, 1)-active or (1, 0)-active bases for all minors of M or M∗ induced by all decom-
posing sequences of the matroid M are taken into account. As a corollary, we get two
expressions for the Tutte polynomial. The first one, which uses only the cyclic flats
Fc, implicit in [EtLV98]. is called the ‘Convolution formula for the Tutte polynomial’
in [KoReSt99]. The second one is new.

Corollary 5.

t(M ;x, y) =
∑

F cyclic flat of M

t(M/F ;x, 0) t(M(F ); 0, y)

Erratum. In
the formula of
Corollary 5, one
has to assume, by
convention, that
β(M) = 1 when
|E| = 1 (that is
β(loop) = 1).

t(M ;x, y) =
∑

∅=F ′ε⊂...⊂F ′0=Fc
Fc=F

′′
0 ⊂...⊂F

′′
ι =E

decomposing sequence

( ∏
1≤k≤ι

β(M(F ′k)/F
′
k−1)

) ( ∏
1≤k≤ε

β(M(F ′′k−1)/F
′′
k )
)
xιyε

For an ordered oriented matroid M , the activity class of M is the set of 2i+j

reorientations obtained by reorienting independently parts of the active partition of
M .

Proposition 6. All reorientations in an activity class have the same active partition.

The activity classes form a remarkable partition of the set of reorientations of M
(see for instance the graphic case Section 6 Part 2).

When −AM , A ⊆ E, runs through the set of all reorientations of M , all the
(0, 1)-active and (1, 0)-active reorientations of minors of M or M∗ induced by the
decomposing sequence of the matroid M are taken into account.

The two above decompositions use similarly the set of all decomposing sequences
of the matroid.

Hence, as opposite reorientations define the same oriented matroid and so must
naturally be associated with the same basis, one can extend a (1−2) correspondence
between (1, 0)-bases and (1, 0)-reorientations to a 1 − 2i+j correspondence between
bases and reorientations preserving activities (i, j). More precisely, we get a bijection
between bases and activity classes of reorientations preserving active partitions. Of
course, by duality of activities and of the previous decompositions of activities, the
same property holds for (0, 1) activities.
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Figure 2

Example. Figure 2 shows the construction for the basis 125 of K4 with internally
active elements 1 2 and no externally active elements. In this simple example, the two
minors M(145) and M/145 have each one basis and a pair of opposite (re)orientations
with activities (1, 0). The common active partition is 145 + 236.

4. Fundamental bijection for (1, 0) activities.

Let M be an ordered oriented matroid. Let f1 be the smallest non loop element of
M , and f2 be the smallest element independent from f1.

Lemma 1. It is easy to check that a basis B = b1 < ... < br, E\ = b′1 < ... < b′n−r
has activities (1, 0) if and only if b1 = f1, b

′
1 = f2, for all 1 < i ≤ r, C∗<(B; bi) ⊆

∪j<iC∗(B; bj) and for all 1 < i ≤ n− r, C<(B; b′i) ⊆ ∪j<iC(B; b′j).
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On the other hand, reorientations with activities (1, 0) are in canonical bijection
with regions (acyclic reorientations, i.e. with orientation-activity 0) which do not
touch f1, the smallest non loop element of M (dual-activity 1). These regions can be
called bounded regions if f1 is considered as the plane at infinity.

4.1. From bases to reorientations: two dual algorithms. Let M be an ordered
oriented matroid on E, and B = {b1, b2, . . . , br}< a (1,0)-active basis of M with
E \B = {b′1, b′2, . . . , b′n−r}<.
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Figure 3

Algorithm 1
(1) reorient C∗(B; b1) to get all signs positive
(2) for i = 2, . . . , r reorient C∗(B; bi) \

⋃
j<iC

∗(B; bj) to get all signs opposite to the
sign of MinC∗(B; bi)



A NATURAL CORRESPONDENCE BETWEEN BASES AND REORIENTATIONS 11

Algorithm 2
(1) reorient C(B; b′1) to get b′1 = e2 negative and all other signs positive
(2) for i = 2, . . . , r reorient C(B; b′i) \

⋃
j<iC(B; b′j) to get all signs opposite to the sign

of Min C(B; b′i)

Proposition 7. Algorithms (1) and (2) produce the same pair of opposite reorienta-
tions A and E \ A, such that −AM = −E\AM has (1,0) orientation activity.

Note that we used here an algorithmic presentation, but in fact Algorithm 1 and
2 just describe two dual adjacency properties which characterize intrinsically the
reorientation associated with a given (1,0)-basis (see Proposition 10).

Theorem 8. The application defined by Algorithms (1) and (2) maps (1,0)-active
bases of M to subsets A ⊆ E \ {e1} such that −AM has (1,0) orientation activity is
a bijection.

We denote Oribas(1,0) the reverse application which maps a (1, 0)-orientation active
oriented matroid onto its associated basis (since obviously a basis depends only on
its associated image, as an oriented matroid, and not as a reorientation).

Examples.
Figure 3 shows these two dual equivalent algorithms for a (1,0)-base of W4.
Figure 4 shows the algorithm 1 for a rank 3 arrangement. Geometrically, for a

given basis B, here B = 135, the fundamental cocircuit of b ∈ B corresponds to
the two opposite vertices intersection of the r − 1 elements B \ b of the basis. The
algorithm 1 comes to restrict step by step the set of possible associated regions, by
choosing step by step, with respect to the linear ordering, which one of these two
opposite vertices in on the same side as the region of the element of the basis. This
is done geomerically by choosing the orientation of the element of the basis, and of
the elements of its fundamental cocircuits that have not yet been oriented, using the
orientation of the minimal element of the cocircuit, which has already been reoriented
or not.

Figure 5 shows the whole bijection for the example of Figure 4.

1

2

3

4 5

6

1

2

3

4 5

6

1

2

3

4 5

135 6

Step Step Step1 2 3

Figure 4
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3

4 5

6135
134

146
156

136

Figure 5

Figure 6 shows various possible situations in rank 4, corresponding to various
shapes that can take the set of circuits and cocircuits of the bases (all situations
in rank 3 are described in [GiLV 03]). The sequence of covectors of Algorithm 1 is
represented on the drawing (i) by a sequence of nested faces: a black circle, a black
segment, a grey triangle and a light grey tetraedron which defines the associated
region. The elements of the minimal basis are f1 < f2 < f3 < f4. The smallest
element of any cocircuit belongs to this minimal basis (easy lemma from greedy
algorithm). With algorithm 1, the vertex corresponding to the fundamental cocircuit
of bi > f1 in B for which bi is positive must be opposite to the associated region,
with respect to the minimal element f of this cocircuit. And this minimal element
has already been reoriented at a previous step j < i, where j is minimal such that
f ∈ C∗(B; bj). Hence the geometrical interpretation of Algorithm 1 is that, finally, f
must cut the segment [C∗(B; bi), C

∗(B; bj)].
Drawing (ii) represents the simplest case: f2 belongs to every fundamental cocir-

cuit, and f2 cuts every segment [C ∗ (B; f1), C
∗(B; b)] for b ∈ B − f1. It is the only

possible situation in the uniform case.
On drawings (i), (iii), (iv) and (v), we have min(C∗(B; b2)) = f2, and f2 cuts the

segment [C∗(B; f1), C
∗(B; b2)].

On drawing (i), we have min(C∗(B; b3)) = min(C∗(B; b4)) = f3, and f3 cuts the
segments [C∗(B; f1), C

∗(B; b3)], and [C∗(B; f1), C
∗(B; b3)].

On drawing (iii), we have min(C∗(B; b3)) = min(C∗(B; b4)) = f3, but this time
f3 6∈ C∗(B; f1), and f3 cuts the segments [C∗(B; b2), C

∗(B; b3)], and [C∗(B; b2),
C∗(B; b4)].
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On drawing (iv), we have min(C∗(B; b3)) = f4, and f4 cuts the segment [C∗(B; f1),
C∗(B; b3)], min(C∗(B; b4)) = f3, and f3 cuts the segment [C∗(B; f1), C

∗(B; b4)].
On drawing (v), we have min(C∗(B; b3)) = f4, and f4 cuts the segment [C∗(B; f1),

C∗(B; b3)], min(C∗(B; b4)) = f3, but f3 6∈ C∗(B; f1), and f3 cuts the segment
[C∗(B; b2), C

∗(B; b4)].

Eventually, this interpretation can be done exactly the same way in the dual, simply
by reorienting f1 and using Algorithm 2.

b
2

b
3

b
4

C (B;b )*
4

C (B;f )*
1

C (B;b )*
2

C (B;b )*
3

f
1

f
2

f
3

(i)

C (B;b )*
4

C (B;f )*
1

C (B;b )*
2

C (B;b )*
3

f
1

f
2

(ii)

C (B;b )*
4

C (B;f )*
1

C (B;b )*
2

C (B;b )*
3

f
1

f
2

f
3

(iii)

C (B;b )*
4

C (B;f )*
1

C (B;b )*
2

C (B;b )*
3

f
1

f
2

f
3

f
4

(iv)

C (B;b )*
4

C (B;f )*
1

C (B;b )*
2

C (B;b )*
3

f
1

f
2

f
3

f
4

(v)

Figure 6
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4.2. From reorientations to bases: inductive algorithm.

Theorem 9. The application Oribas(1,0) satisfies the following inductive definition.

Let M be an ordered oriented matroid M on a set E with greatest element ω, having
orientation activities (1, 0). A function γ is defined so that γ(M) = 1 if and only if
ω ∈ Oribas(1,0)(M).
If M = U1,1, the 1-element oriented matroid of rank 1, then Oribas(1,0) = ω.
If M 6= U1,1 then :

if o∗(−ωM) = 0 then set γ(M) = 0
if o∗(−ωM) > 1 then set γ(M) = 1
if o∗(−ωM) = 1 then :

let B′ = Oribas(1,0)(M \ ω), C = CM(B′;ω) and e = Min(C)
if σC(e) 6= σC(ω) then γ(M) := 0 ;
if σC(e) = σC(ω) then γ(M) := 1 ;

or equivalently :
let B′′ = Oribas(1,0)(M/ω), D = C∗M(B′′ ∪ ω;ω) and e = min(D)
if σD(e) 6= σD(ω) then γ(M) := 1 ;
if σD(e) = σD(ω) then γ(M) := 0.

If γ(M) = 0 then
Oribas(1,0)(M) := Oribas(1,0)(M \ ω)

if γ(M) = 1 then
Oribas(1,0)(M) := Oribas(1,0)(M/ω) ∪ ω

Note that, as in the previous subsection, there are two dual, and equivalent, points
of view in this definition. This equivalence is quite not obvious, its proof uses the
fundamental Theorem 8.

4.3. From reorientations to bases: extensions of linear programming in
oriented matroids. Oriented matroid programming is a combinatorial extension of
linear programming to oriented matroids (see [OM] Chap. 10). In this subsection,
we define an extension of oriented matroid programming. Geometrical illustrations
are given in the uniform case, and in the rank 3 case (see Section 6).

Let M be an acyclic oriented matroid on a linearly ordered set E = {e1, e2, . . . , en}<
with dual-orientation activity 1. The plane at infinity in the topological representa-
tion is f1 = e1. The region R corresponding to M is bounded, i.e. does not touch
f1. Let B = Oribas(1,0)(M) be the (1,0)-active basis associated with M by the active
correspondance.

In oriented matroid programming, a cocircuit C is optimal for the program (M, g, f)
if and only if there exists a basis B such that the fundamental cocircuit C∗(B; g) is
positive except maybe on f and the fundamental circuit C(B; f) is positive except
maybe on g. Another formulation is that an element of a fundamental circuit be-
longing to C∗(B; g), except f , has to be positive, and an element of a fundamental
cocircuit belonging to C(B; f), except g, has to be positive. In the extension we
introduce, f1 resp. f2 plays the part of g resp. f , but the signs in all fundamental
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circuits and cocircuits are taken into account and not only two - the first circuit and
cocircuit. Precisely the signs of all minimal elements of fundamental circuits and
cocircuits, except for the first cocircuit, must be negative

A basis B with the properties of Proposition 10 can be considered, by analogy, as
the optimal basis of M with respect to the ordering of E for an extended oriented
matroid program.

Proposition 10. The optimal basis B of the (1, 0)-active oriented matroid M is
characterized uniquely by the following properties, with B = {b1 = f1, b2, . . . , br}<
and E \B = {b′1 = f2, b

′
2, . . . , b

′
n−r}<:

(i) The r covectors C∗(B; b1)◦C∗(B; b2)◦ . . .◦C∗(B; bi) i = 1, 2, . . . , r are positive.
(ii) The n − r vectors C(B; b′1) ◦ C(B; b′2) ◦ . . . ◦ C(B; b′i) i = 1, 2, . . . , n − r have

all e1 as unique negative element.

We give now an intermediate extension involving only the first fundamental cocir-
cuit.

Proposition 11. In the uniform case, the vertex v1 of R given by the fondamental
cocircuit C∗(B; f1) is the maximum resp. minimum of the matroid program with
infinity plane f1 and objective function f2 if R is on the positive resp. negative side
of f2.

In general, v1 is the solution of simultaneous matroid programs with objective
functions given by the elements of the lexicographically minimal basis of M . For a
given objective function, the requirement - maximum or minimum - depends on the
position of R with respect to the corresponding pseudohyperplane.

More precisely, instead of an optimal face when the kernel of the objective function
is parallel to a face of the region, the active correspondence always determines a
precise optimal vertex C∗(B; f1). In fact, the optimization is made according to f2,
then according to f3 if the optimal face is not a vertex, then according to f4, and so
on, where f1 < ... < fr is the minimal basis for the lexicographic ordering.

We define the active cocircuit graph as the directed graph whose vertices all are
cocircuits of M and an edge suported by the coline F (flat of corank 2) is directed
from fq to fp, where fp < fq is the minimal basis of M/F .

Proposition 12. C∗(B; f1) is the only vertex with no outgoing edge in the restriction
of the active cocircuit graph to the positive cocircuits of M .

This first extension is due to the fact that signs of the minimal element of every
fundamental cocircuit except the first must be negative (not only the ones contained
in C(B; f2)). The cocircuit C∗(B; f1) is the unique optimal vertex of the oriented
matroid multiprogram defined by M and its minimal basis for the ordering on E.

If we add the constraint that the sign of the minimal element of every fundamen-
tal circuit is negative, we get the general extension of Proposition 10. The second
extension corresponds to the fact that, instead of an optimal vertex as in usual pro-
gramming, the active correspondence determines an optimal basis, i.e. an optimal
sequence of increasing faces, or flag, with respect to the ordering on E.
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By analogy with usual linear programming, we say that B is the unique optimal
basis solution of the flag matroid program defined by M and the ordering on E.

From an algorithmic point of view, the optimal basis of a bounded region is calcu-
lated with the algorithm of Theorem 9 (see also section 5.2).

Examples. Back to Figure 6 and its interpretation, when f cuts a usefal segment
[C∗(B; bi), C

∗(B; bj)] with j < i, and thus is used for the reorientation or not of
bi in algorithm 1, one could say by analogy and langage abuse that f is the usefal
objective function for the face C∗(B; b1) ◦ ... ◦ C∗(B; bi). The active cocircuit graph
and Proposition 12 are illustrated on next Figure 9. The notion of flag programming
is ilustrated on next Figure 11.

Erratum. In this
subsection 4.4, one
has to assume that
f1 = min(E) and
f2 = min(E\{e1})
(which is implied
when M is simple).

4.4. The (0, 1) case and a strong duality property.

Proposition 13. Let M be an ordered matroid with minimal basis {f1 < f2 < . . .}.
(i) A basis B of M is (1,0) active if and only if B \ {f1} ∪ {f2} is (0,1) active
(ii) Suppose M is an oriented matroid. Then M is (1,0) orientation active if and

only if −f1M is (0,1) orientation active

Using this lemma, the previous bijection between (1, 0)−bases and (1, 0)−reorientations
of M extends readily to bases and reorientations with (0, 1) activities.

Proposition 14. ‘Strong duality property’
If M has activities (1, 0), associated with B, then −f1M∗ (which has activities

(1, 0)) is associated with (E \B) \ f2 ∪ f1.

This property is an extension of the property of duality of linear programming
((M, g, f) and (M∗, f, g) are dual programs). In other words, f1 and f2 play dual
parts in the extended program also.

5. The canonical active correspondence

The bijection mapping (1, 0)-active reorientations to bases defined in Section 4 is
denoted Oribas(1,0).

The canonical active correspondence of an ordered oriented matroid M is con-
structed by extending the fundamental bijection - or, more precisely (1-2) correspon-
dence - for (1, 0) activities of Section 4 to all activities by means of the reduction
of Section 3. The application, whose restriction to (1, 0) active oriented matroids is
Oribas(1,0), that maps an oriented matroid M on its associated base, is denoted by
Oribas.

The resulting correspondence not only preserves activities, but also the active ele-
ments, and in fact the active partitions.

The 2ι(B)+ε(B) reorientations associated with a given basis form an activitiy class,
they are obtained from any one of them by reorienting independently the ι(B)+ ε(B)
parts of the active partition.

Moreover according to its definition and Proposition 14, the correspondence is
invariant by duality:

Oribas(M∗) = E \Oribas(M)



A NATURAL CORRESPONDENCE BETWEEN BASES AND REORIENTATIONS 17

1

2

3

4 5

6

135
134

146
156

136

123

123

124

125

126

123

123125 124

126

Figure 7

Example. Figure 7 shows the correspondence for all acyclic reorientations of Figure
5. In this example, since the oriented matroid obtained by contraction of 1 is uniform,
then the bases associated to regions along 1 can be calculated immediately in this
minor.

5.1. From bases to reorientations. The Algorithms 1 and 2 examine each ele-
ment of E once, say they are single pass. Similarly the algorithm to construct the
decomposition of activities of a basis is also single pass (Proposition 3). Hence the
set of reorientations associated with a given basis can be computed in a single pass.
Moreover, we need only to know the fundamental circuits and cocircuits.

Proposition 15. Let B a base of M , ordered oriented matroid on E = e1 < ... < en.
The reorientations associated with B by the canonical active correspondence of M
are calculated by the following algorithm. It constructs at the same time the active
partition of B and a reorientation A associated with B. The 2ι(B)+ε(B) reorientations
are obtained either by doing all possible choices e ∈ A or e 6∈ A during the algorithm
or from a reorientation A by reorienting any part of the active partition of B.

for k from 1 to n do
if ek 6∈ B then

if ek is externally active then
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ek external, α(ek) := ek, and choose ek ∈ A or ek 6∈ A
else

if there exists c < ek internal in C(B; ek) then
ek is internal
let c in C(B; ek) with c < ek, c internal and α(c) the greatest possible
let α(ek) := α(c)

else
ek is external
let c in C(B; ek) with c < ek and α(c) the smallest possible
let α(ek) := α(c)

let e the smallest possible in C(B; ek) with α(e) = α(ek)
if σC(B;ek)(ek) 6= σC(B;ek)(e) then

ek 6∈ A if an only if e 6∈ A
if σC(B;ek)(ek) = σC(B;ek)(e) then

ek 6∈ A if and only if e ∈ A
if ek ∈ B then

if ek is internally active then
ek internal, α(ek) := ek , and choose ek ∈ A or ek 6∈ A

else
if there exists c < ek external in C∗(B; ek) then
ek is external
let c in C∗(B; ek) with c < ek, c external and α(c) the greatest possible
let α(ek) := α(c)

else
ek is internal
let c in C∗(B; ek) with c < ek and α(c) the smallest possible
α(ek) := α(c)

let e the smallest possible in C∗(B; ek) with α(e) = α(ek)
if σC∗(B;ek)(ek) 6= σC∗(B;ek)(e) then

ek 6∈ A if and only if e 6∈ A
if σC∗(B;ek)(ek) = σC∗(B;ek)(e) then

ek 6∈ A if and only if e ∈ A

5.2. From reorientations to bases. Given a reorientation, the problem of finding
the associated basis is far much harder in the sense of complexity. There is a natural
exponential algorithm, which is a refinement of an set version of the definition of the
Tutte polynomial by deletion/contraction. It is a generalization to all activities of
the inductive definition for the (1, 0) case given in the previous section.

More precisely, there are essentially two ways to calculate Oribas(M) for an ordered
oriented matroid M . The first one is by decomposing the activities of M (section 3.2)
and apply the inductive definition of Oribas(1,0) (section 4.2) to all obtained minors
with activities (1, 0) and dually (0, 1). This comes to decompose a reorientation
into bounded regions of minors of the matroid and its dual, and then calculate the
optimal basis for each one of these bounded regions (section 4.3). The second is
directly with the following theorem. The part ‘choice’ of the algorithm is due to fact
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that Oribas preserves active partitions, and the part ‘equality case’ is due to the
adjacency property of Algorithm 1 or 2.

Theorem 16. The application Oribas is determined by the following inductive def-
inition, with γ(M) = 1 if and only if ω ∈ Oribas(M); Oω(M), resp. O∗ω(M), is
the set of minimal elements of positive circuits, resp. cocircuits, of M containing ω;
σC(e) is the sign of e in the signed part C; and max(∅) < e for all e ∈ E.

For all ordered oriented matroid on E with max(E) = ω.

If ω is a loop of M then γ(M) := 0.
If ω is an isthmus of M then γ(M) := 1.
If ω is not an isthmus nor a loop of M then :
choice

if max O∗ω(M) > max O∗ω(−ωM) or max Oω(M) < max Oω(−ωM)
then γ(M) := 0 ;

if max O∗ω(M) < max O∗ω(−ωM) or max Oω(M) > max Oω(−ωM)
then γ(M) := 1 ;

if max O∗ω(M) = max O∗(−ωM) and max Oω(M) = max O(−ωM)
then :

equality caseErratum (2006).
The construc-
tion given in the
“equality case” is
not correct. The
correct construc-
tion, formulated
for the acyclic
part, is given
as Theorem 2.1
in [Gioan, Las
Vergnas. The
active bijection
between regions
and simplices
in supersolvable
arrangements of
hyperplanes. Elec.
J. Comb. 11(2)
#R30 (2006)].
A more general
formulation will be
given in a specific
paper on dele-
tion/contraction.

let B′ = Oribas(M \ ω) and C = CM(B′;ω)

if O∗ω(M) 6= ∅ then let e = min
(
C ∩

⋃
D positive cocircuit of M
min(D) ≥ max(O∗ω(M))

D
)

if O∗ω(M) = ∅ then let e = min(C)
if σC(e) 6= σC(ω) then γ(M) := 0
if σC(e) = σC(ω) then γ(M) := 1

or equivalently :
let B′′ = Oribas(M/ω) and D = C∗M(B′′ ∪ ω;ω)

if Oω(M) 6= ∅ then let e = min
(
D ∩

⋃
C positive circuit of M

min(C) ≥ max(Oω(M))

C
)

if Oω(M) = ∅ then let e = min(D)
if σD(e) 6= σD(ω) then γ(M) := 1
if σD(e) = σD(ω) then γ(M) := 0

end
if γ(M) = 0 then

Oribas(M) := Oribas(M \ ω)

if γ(M) = 1 then

Oribas(M) := Oribas(M/ω) ∪ ω

The element max O∗ω(M) is the greatest minimal element of a positive cocircuit
containing ω in M , that is the minimal element of the part containing ω in the active
partition of M .
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Note that the two equivalent choices are dual each other, and that M and −ωM
play synmetric parts:

γ(M) = 1− γ(−ω)M

3

2

1

4d b c a g f e

1234 123d 123c 123b 123e 123g 123f 123a

Figure 8

Example. Figure 8 is the sequel of the example of Figure 1. The order is 1 < 2 < 3 <
4 < a < ... < g. It gives the basis associated with some regions of an arrangement
of rank 4. One can read the active partitions on Figure 1. Admitting that in this
particular picture all represented regions must be associated with bases containing
123 (because all these regions touch 1 and 2, that is have dual active elements 1, 2
and 3), one can easily apply the previous algorithm to all them. For instance, for the
region between g and f , the face of the region embedded in 1 is embedded in g. Hence
any positive cocircuit of the region containing g = ω will have smallest element 1.
That is max O∗ω(M) = 1. On the contrary the opposite region with respect to g has
a vertice on the face 1 \ 2 which is not on g. That is max O∗ω(−ωM) = 2. Then by
the inductive definition of Oribas, we have g ∈ Oribas(M). Then on the one hand
Oribas(M) = 123g, and on the other hand g is deleted, and so on...

5.3. No Broken Circuit complex. The canonical active correspondence does not
depend on a particular reorientation. If we choose a particular reference reori-
entation M , and associate for a reorientation −AM associated with the base B,
the subset B4(A ∩ (Int(B) ∪ Ext(B))) to −AM instead of B, we get an activ-
ity preserving bijection between subsets and reorientations, where the activity of
a subset is the activity of the associated base by means of the classical partition
([Da81][Bj87][GoTr90][LV03]) of 2E into intervals [B \ Int(B), B ∪Ext(B)] for every
base B [GiLV] (see also [Gi02] Part 4.3).

A broken circuit is a circuit whose smallest element is removed. A subset containing
no broken circuit is associated with a basis whose external activity is 0 (the No Broken
Circuit subsets form notably a basis of the Orlik-Solomon algebra)

Hence, the restriction of the above bijection to acyclic reorientations gives an active
bijection between the faces of the No Broken Circuit complex of the matroid and the
regions of the oriented matroid.
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6. Particular cases

The uniform and rank 3 cases are studied into details in [GiLV03], and the graphic
case in [GiLV02] (Proceedings of FPSAC02) (see also [Gi02] Parts 6.1, 6.2 and 6.4).

6.1. Uniform case. In the uniform case, a basis B is (1,0)-active if and only if e1 ∈ B
and e2 ∈ E\B. Let B be a (1,0)-active basis. We have C∗(B; e1)∩C(B; e2) = {e1, e2}.

Set D = C∗(B; e1) and C = ±C(B; e2) such that e2 has the same sign in C and
D. Applying Algorithms 1 or 2, we get that the reorientation associated with B by
the active correspondence is

A = (C− ∪D−) \ {e1}

In −AM the fundamental cocircuit D is positive and the fundamental circuit C
has C− = {e2}.

In the uniform case, a (1, 0)-base B is determined by the fundamental cocircuit
of e1 according to B. The correspondence amounts to the usual oriented matroid
programming: the application Oribas(1,0) maps a bounded region of M on its optimal
vertex C∗(Oribas(M); f1) for the oriented matroid program (M, f1, f2) on the positive
side of f2 resp. (M, f1,−f2) on the negative side of f2.
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Example. Ringel arrangement n = 9 r = 3 (Figure 9). The vertex with no outgoing
edge in each region is the fundamental cocircuit of e1 according to the optimal basis
of this region (Proposition 12).

6.2. Graphic case. In the graphic case, we get in general an active bijection between
spanning trees and activity classes of orientations. In this case, orientations with (1, 0)
activities are acyclic orientations with unique source and unique sink, extremities of
the smallest edge e1.

We say that a spanning tree T in an ordered graph is increasing with respect to a
vertex s if the edges increase for the ordering along any path of T beginning at s.
As easily seen it is always possible to define a total order of the edges so that the
lexicographically smallest spanning tree is increasing with respect to s.

Proposition 17. Let G be an ordered graph such that the lexicographically smallest
spanning tree is increasing with respect to a vertex s.

Then there is exactly one acyclic orientation with a unique sink at s in each activity
class of acyclic orientations of G.

Hence the correspondence gives an active bijection between spanning trees with
external activity 0, and acyclic orientations with unique given sink.

Example. Figure 10 shows this bijection for W4. The lexicographically smallest
spanning tree 1236 is increasing with respect to the NE (North-East) vertex. For
each acyclic orientation with unique sink at the NE vertex, we have indicated its
image by Oribas: an internal spanning tree (its edges are drawn in heavy lines).
We have also indicated the active partition. The internal activity is the number of
parts of the active partitions, and the active edges are the first element of each part.
By reversing all edge directions in arbitrarily chosen parts of the active partition,
we get the activity class associated with the same tree. By Proposition 17, in each
activity class exactly one acyclic orientation has a unique sink at the NE vertex: this
orientation is shown on Figure 10.

The problem of counting orientations of graphs in connection with the Tutte poly-
nomial has been addressed several times (for instance in [Vi86] for acyclic orientations
and the chromatic polynomial of a graph with a totally ordered set of vertices, or
in [GeSa00] for acyclic orientations with unique sink, or in [CoLB02] for the same
orientations in connection with the sandpile model) but it is the first time that ac-
tivities of orientations are taken into account (except in [LV83] where a different
correspondence in the graphic case was considered).

Moreover, the oriented matroid point of view, for which only edges are considered
and ordered, allows to take into account every orientation, not only acyclic ones, via
duality properties.
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Figure 10

6.3. Rank 3 case.

Proposition 18. In a rank 3 oriented matroid, the active canonical correspondence
is the unique way to associate bijectively every (1, 0)-basis B = f1 < ep < eq with a
bounded region such that eq is frontier of the region, and ep contains an extremity of
the segment contained in eq in the region.

Example. Figure 11 illustrates this property. The sequence of faces ep ∩ eq ⊂ eq in
each region illustrates the flag matroid programming of section 3 (see also the final
picture in color).
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Intuitively, the application Oribas can be thought of as a phenomenon of attraction
with respect to the linear ordering, related to activities, i. e. as an (attr)active
function of ordered oriented matroids (see Figure in Annex).

7. References

[OM] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, G. Ziegler, Oriented
matroids 2nd ed., Encyclopedia of Mathematics and its Applications 46, Cambridge
University Press 1999.

[Bj 87] A. Björner, Homology and shellability of matroids and geometric lattices,
Combinatorial Geometries, Cambridge University Press (1987).

[BrLu76] T. Brylawski, D. Lucas, Uniquely representable combinatorial geometries,
Teorie Combinatorie, B. Segre ed., Accademia Nazionale dei Lincei, Roma 1976,
83-108.

[BrOx92] T. Brylawski, J. Oxley, The Tutte polynomial and its applications, Chapter
6 in: N. White (ed.), Matroid Applications, Cambridge University Press 1992.

[CoLB02] R. Cori, I. Le Borgne, Sandpile model and Tutte polynomial, Proc. FP-
SAC01, Adv. in Appl. Math., to appear.



A NATURAL CORRESPONDENCE BETWEEN BASES AND REORIENTATIONS 25

[Cr69] H.H. Crapo, The Tutte polynomial, Aequationes Math. 3 (1969), 211-229.

[Da 81] J.E. Dawson, A construction for a family of sets and its application to ma-
troids, Comb. Math. VIII (Gelong, 1980), Lect Notes in Math. 884, Springer (1981),
136-147.

[EtLV98] G. Etienne, M. Las Vergnas, External and internal elements of a matroid
basis, Discrete Math. 179 (1999), 111-119.

[GeSa00] D.D. Gebhard, B.E. Sagan, Sinks in acyclic orientations of graphs, J. Com-
bin. Theory Ser. B 80 (2000), 130-146.

[Gi02] E. Gioan. Correspondance naturelle entre les bases and les réorientations des
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Annex. The following figure (it is Figure 11 with colors: only epeq is written for
each (1, 0)-basis e1 < ep < eq) illustrates the attractivity phenomenon described by
the canonical active correspondence.
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